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Comparison of Two Types of Dispersive Kinetic Approaches in Relation to Time-Dependent
Marcus Theory
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Two different approaches presented in recent literature for the treatment of dispersive kinetics for a first-
order (F1) conversion mechanism are compared from a physicochemical perspective. The author’'s approach
is found to be successful in describing activation energy trends as a function of time that can be predicted
from a simple extension of Marcus theory. Thus, the approach is considered to have a sound fundamental
basis.

Introduction acceleratory in nature (note: for deceleratent sigmoids, the
inflection point typically occurs earlier in the conversion than
for acceleratory transient8)The dispersion (i.e., variation) in
the activation energy has been attributed to differences in the
molecular kinetic energies; these energies can be depicted by
an inverted distribution that is superimposed on a hypothetical
potential energy surface (PES) for the conversion. The resulting
activation energy distributions, when plotted as a function of

Dispersive kinetics occur in chemical reactions and phase
transformations for which the rate of internal rearrangements
(e.g., molecular relaxation), responsible for causing continuous
“system renewal”, is similar to or slower than the rate of the
overall conversiod.As dispersive kinetics can be observed in
all phases of matter and (in part, consequently) at very different
t|me-s_caI(_e§, ! th? study of systems exhibiting this type of the extent of conversiony, can be either concave-up (for
behawo_r IS very |mporta_nt_. . ) deceleratori—t sigmoids) or concave-down (for acceleratory

The kinetic trends exhibited by dispersive systems are often 4565y as a point of interest, this finding might explain some
exemplified by “stretched exponential” or “asymmetric, sig- ot the solid-state thermal analysis data tréndbtained for
moid” fractional conversion versus tim&-(t) plots, obtained elementary processes using so-called isoconver&iarahodel-
under isothermal conditions. As such curve shapes are usuallyfree methods. More recently, the dispersiorDi(Es) has been
difficult to fit with traditional (i.e., nondispersive) kinetic  ¢nqwn to relate a stochastic change in the activation entropy
models, the use of a dispersive approach for treating the kinetics,ggociated with the reagent molecules as they transition over
might be more appropriate. the activation energy barriér.

Two independent approaches for the treatment of dispersive | previous worlké D(E.) was converted to a distribution of
kinetics have been described in recent literature. While one mglecular rate constantf(K), using the Eyring equation.
approach is based on the idea of a Maxw@bltzmann (M- Employing a simple assumption and performing some basic
B) distribution of activation energies, the other utilizes the mathematical manipulations/simplificatioh®(k) was shown

concept of fractal conversion time. Each approach defines a verytg relate a time-dependent rate coefficiekft), for the overall
d|ﬁerent funCt|0na| form for the t|me'dependent rate coefficient conversion. The genera' form d{(t) m|ght be adequate'y

(note that in traditional kinetics, the rate coefficient is nottime- represented by the Gaussian function:
dependent; thus, it is often called a rate constant). The purpose

of this work is to provide a brief comparison of these treatments, k(t) ~ ae’® (1)
as they relate to a first-order conversion mechanism, and to ]
identify the approach that best fits with Marcus theory. wherea andf are constants (i.e., global rate parameters for

the overall conversion), each with physically meaningful units

in the time domain. In eq 1, the value gfis negative if the

reaction is deceleratory and positive if it is acceleratory. Using
First-Order Dispersive Kinetic Models Based On A the integrated, first-order (F1) reaction model expres$in:

Maxwell—Boltzmann Distribution of Activation Energies. In

recent publicationd35° the author has described an approach X=exp— (t”)fot k(t) dt (2)

for the treatment of dispersive kinetic data based on the

assumption of an activation energy distribution possessing the (wherex represents the mole fraction of reagent material in the

functional form of the Maxwett-Boltzmann (M-B) distribution. system at time and the termt", allows for various dimension-

In the author’s treatment, the B distribution of activation alities12 other than zero, to be considered, e.g., for conversions

energiesP(Ey), originates from molecular-level differences in  involving the solid-state) one can obtain the following dispersive

the energies of either the reagent state or the activated stat&inetic models®’

(AS)/product species involved in defining the rate-determining N

step, depending on whether the conversion is deceleratory or x ~ "¢ ) 3)

Results and Discussion
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Equation 3 assumes a negative valug géxplicitly shown
in the equation) and = 2; it has been shown to be useful in
modeling two-dimensional (2-D) nucleation/denucleation kinet-
ics3 Equation 4 assumes (explicitly) a positigevalue andn
= 0; it has been shown to be useful for modeling polymorphic
transformatiorx—t transients that are nucleation rate-limifed.
Of all of the dispersive variants of the classical kinetic models
developed to daté,eq 3 and eq 4 have been used most
extensively by the author in various applications.

It is important to highlight the fact that the approximations
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and, correspondingly, in the free energy of activation to describe
nucleation kinetic$? along similar lines, the author believes
that many nucleation/denucleation rate-limited processes are
dispersive (particularly those involving smaller critical nuclei
that cannot be adequately described by the classical nucleation
theory (e.g., see ref 14) because of the limited applicability of
classical thermodynamic relations on the microscopic level; note
that use of the M-B distribution implies the possibility of
energy quantization in the overall activation energy barrier).
As an aside, the well-known works by the Nobel-laureate

pertaining to eqs 3 and 4 stem from the fact that these modelsZewail*> over the last two decades have demonstrated that it is
were actually derived using a time-dependent rate coefficient possible to observe (on the femtosecond scale) both classical

having the functional form:

kt) = + 2‘%2 € ~1)+a (e (5)

wherep can be either positive or negative, as shown explicitly
in the equation; the sign in front of the brackets on the right-
hand side of the equation is opposite to thaBoEquation 5 is

saddle point transition states as well as (conversely) a small
dip in the PES in the vicinity of the activated state. Transition
state theory (TSTy18 typically assumes only the latter case
because any activated complex located at a saddle point would
necessarily require a (low energy) imaginary vibrational fre-
guency to dissociatelft
First-Order Dispersive Kinetic Model Based On Fractal

Time. Plonkd#20-22 has described/reviewed extensively the

used in lieu of eq 1 since the direct integration of a Gaussian dispersive kinetics literature that introduces the concept of fractal

does not yield a simple analytical solution (the exact solution

time via the use of the KohlrausetWilliams—Watts (KWW)

to eq 2). Using eq 1 would necessitate the use of the error relaxation function®(t):

function or imaginary error function, in eqs 3 and 4, respec-
tively;” however, implementing these functions would likely

o(t) = 1" 9)

make the models less attractive to many workers because they

require numerical solution. While an investigation into the
validity of this approximation will be presented later, it is
reiterated here that eq 1 is, itself, only an approximation.

wheren andr are constants; is a so-called time constant and
0 < n =<1 (note: forn =1, a time-independent, classical, rate
constant is obtained, as one can considerbe inversely related

However, despite this fact, the usefulness of eqs 3 and 4 into k). Equation 9 can be thought of as a superposition of first-

modeling real-world dispersive kinetics, as mentioned above,

order exponential decays with a probability density defined by

supports the idea that these models have a solid physicala function,g(z); it is this superposition that gives the overall
foundation. For this reason, it is not necessarily critical here to appearance of a stretched exponential.

ascertain the exact functionality &ft) but rather to note that

Equation 9 has been used analogoffdly eq 1/eq 5 to derive

its time-dependence is generally consistent with a Gaussian, fordispersive kinetic model variaritsf the classica? first-order
example, not an exponential, as defined in the closely related (F1) and second-order (F2) models. Like the author’s F1-based

Gompertz equatioh.

dispersive models presented earlier (eqs 3 and 4) only the F1

The activation energy for dispersive processes, like the rate dispersive variant, based on eq 9, will be discussed here (note:

coefficient,k(t), is time-dependent. The author has shown that,
using eq 1, the activation energy obeys the general rel8tion:

E, () ~ E2 + RTpt (6)

whereEg is the potential energy (i.e., time-independent/classi-

cal Arrhenius) portion of the activation energy barrigiis the

gas constant, antlis the absolute temperature. Because of the

sign differences possible fgf (hence the+ in the above
equation) E,(t) can either increase or decrease with tiej

is negative (i.e., from eq 3), the activation energy increases with
time and the process exhibits a rate deceleration. Conversely,

if 5 is positive (i.e., from eq 4)E4(t) decreases with time and
an acceleratory, sigmoixt trend is typically observed.

Utilizing eq 6, the distribution functions for the activation
energies corresponding to eqs 3 and 4 are:

f(Ey) ~ explay/ (EL-E)BRT[€SF0-1])  (7)
f(E,) ~ exp—(ay/ (E,~EYIBRT[e =FD-1])  (8)

respectively. Equations 7 and 8 indicate that the activation
energy distribution might be complex in certain cases, depending

on the relative magnitudes oF2 and E, However, this

the author’s dispersive models for other conversion mechanisms
are provided elsewhefe

Defining a time-dependent rate coefficient having the form:
20

k(t) =Bt"* (10)

where B and n are constants (0< n =< 1; B = n/t"), the
Arrhenius equation can be used together with eq 10 to obtain
an expression for the time-dependent activation endegy),

of the proces$®

E()=E+ (1 n)RTIn(—) (11)

t
T

For a classical F1 mechanism, the dispersive variant describ-
ing the overall conversion is given BY:

x=g @ (12)

and the activation energy distribution functidi(Es), can be
written as?°

e{ —dn(Ea—EQr(1- R}

f(E,) = (13)

Note that eq 12 is often referred to as the Johrddehl—

observation should be considered in light of Maksimov's use Avrami—Erofe’ev (JMAE) equatioR3—27 for specific value!2

of both real and imaginary components in the partition function

of n; it finds wide application in solid-state kinetics involving
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nucleation and growth. Unfortunately, the values ¢ unitless
parameter) obtained through curve-fitting of experimental data
are not always aligned with existing theory. Nonetheless, given
the differences in the definitions &(t) between eq 1/eq 5 and P
eq 10, that yield very different corresponding dispersive kinetic
models (i.e., eqs 3 and 4 versus eq 12) and ultimately give rise

Energy, E

AS

to the differences that can be observed between the author’s eq ES

7 and eq 8, relative to eq 13, it might be useful to try to evaluate

the accuracy of the two approaches. As both sets of F1 dispersive AG;

kinetic models have already been shown to be useful in the

modeling of various experimentat-t transients, a comparison

of the two approaches on a more fundamental level might be Time. 1

prudent. Displacement, d
Comparison of the Two Dispersive Kinetic Approaches Reaction Coordinate

Using Marcus Theory. From the standpoint of comparing the  Figure 1. Schematic (potential) energy versus reaction coordinate
two types of dispersive kinetic approaches presented here, itdiagram for a hypothetical first-order (F1) reaction, of the variety studied
might be useful to employ the Marcus the®ryo provide a by Marcus.R denotes the reagent energy parabélas the product

physicochemical basis for the comparison, considering a Simme,energy parabola. All other terms are defined in the text. The thin broken

. - . . lines show the coordinates of the equilibrium positiondRofP, and
F1-type, chemical reaction mechanism (e.g., one that InVONGSAS. The thick broken lines depict trends in the activation energy versus

proton/electron transfer). Along these lines, the author has gime profiles of various dispersive processes; the activation energy can
recently proposed a time-dependent Marcus theory (TDMT), either increase or decrease with time over the course of conversion, as
for application to dispersive kineti@8.0n the basis of that  a function oft? (see text for details).

earlier work, it was concluded that the variation in the activation

energy of dispersive processes might be linked to a time- Epgis a concave-up parabola (as shown in the figuEgy, for
dependent reorganization energyt). With consideration of that same SHO will be concave-down, that is, complementary

the schematic in Figure 1, the author’'s expressionHgt), in shape (not showr?f. If one considers that displacement is
based on TDMT, can be written as: related to time via the function cast), wherew is the angular
frequency, the energies trend is a function of26e¥ or sir-
At) AG,|? (wt). The parabolic energy profiles shown in the figuEgd)
EL(t) = 4 1+ () (14) can be shown to be well-approximated by these squared

trigonometric functions, since, as pointed out by a reviewer,
. . . both the sine-squared and the parabolic functions are monotoni-
\I/:v_hereAfr tl)s ttrl]ﬁethstandard ?'bbg ftrr;ee enedrgyt 0[ react:;)g. In cally increasing (through the first turning point for the trigo-
:)th:l?iaIS, cac:1 be vx?ellriagigxirigte d s Elrr% ngz arzrt])%laa[n-e ONeSh ometric function) and they are directly proportional at lower
P P y simple p . displacements (that are of primary interest in this work because

wor!<_ n_eeded to move the reactants anq products _from the.'rthey are far from the bond dissociation energies). For this reason,
equilibrium positions on the reaction coordinate to an intermedi- : L - .
the horizontal axis in Figure 1 might also be considered the

ate point where the two curves intersect defines the activation T . X i .
; i conversion time; this idea is depicted in the abscissa label of
energy needed to form the (short-lived) transition state, TS, . . , .
the schematic. Note that regarding the author’s parabolic

species (note: in Figure 1, the term TS is replaced by a more - oximation for the dependence Bi(t) on the conversion
general one, the activated state, AS, which might be more useful Approx per .
time (discussed more later), it should not be seen as problematic

for describing dispersive solid-state phase transformations, e'g"that according to ea 6. the ener rofile can be either concave-
where the higher energy levels pertaining to the rate-determining =~ 9 90, 9y p .
up or concave-down since that same behavior can be observed

step are those of the product nuéfi for the classical case of the SHO energy dependence on dis-

If one correlates the changeft) to a variation in the time- - - ;
Lo placement, as mentioned above (i.e., depending on whether the
dependent energy component of the overall activation energy . o ; L .
energy under consideration is potential or kinetic, respectively).

barrier829 for various molecules undergoing conversion, dif-

ferent molecules can be considered to convert with different 10 Summarize, the distribution of speeds at which different
specific reaction rates (i.e., rate coefficients). For this reason, Molecules achieve the AS creates dispersion in the activation

dispersion in the activation energy of the process can be €nergy barrier, ultimately resulting in a distribution of activation
observed, as was discussed earlier. With the aid of Figure 1,energies, thatis(E). It was shown earlier how(E,) andE(t)
this dispersion might be interpreted as molecular-level variations Might be related. On the basis of the above discussion, one can
in the rate at which the AS is formed. consider that, for small displacements, the time-dependence of
While the abscissa in the schematic is traditionally labeled the oscillator energies in Figure 1 can be approximated as being
the reaction coordinate, Figure 1 actually depicts the potential Parabolic. Thus, the remaining goals of this work are twofold:
energy Epp) profiles of two independent, simple harmonic first, to see whether eq 6 oreq 11 dpes a betterjop of explaining
oscillators (SHOs) as a function of their displacement. It is theEa(t) versust trends that can be inferred from Figure 1, and
common knowledge thape = (1/2)6d2, whereé is the force secon_d, to utilize the more appropriate o_f_those two equations
constant (related to the bond strength) ahds the atomic 0 derive a new, physicochemically significant expression for
displacement of the oscillator. However, for a given SHigs A(t), with the aid of eq 14.
and the kinetic energyExe, continuously interconvert, out of By considering egs 6 and 11, it is clear that the former
phase with each other in time (note: the total energy is fixed equation explains thEy(t) versus trends highlighted in Figure
and independent of motion). Thus, one can describe the systeml best, because of the fact that it ha® dependence. On the
in Figure 1 equally well in terms of either kinetic energies or other hand, in the author’'s experience, a logarithmic function,
potential energies, as a functionafover a region ofl where as per eq 11, cannot be used to satisfactorily approximate the
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time-dependence of the SHO energies (either periodic or when
approximated as being parabolic) over any range of displace-
ments.

According to eq 6, one can see that by startin@%ﬂtt =
0 (i.e., the classical Arrhenius/Eyring definition of the activation
energy potential), the time-dependent activation energy barrier
for dispersive processes can either increase with time (for§
deceleratory processes, those that have a negAtivalue,
according to the model given by eq 3) or decrease with time
(for acceleratory conversions, those that have a pogitixedue,
according to the model given by eq 4) as depicted by the two
thick, broken lines in the graphic. For deceleratory dispersive
processes, the dispersion in the activation energy has been shown
elsewhere to be attributable to potential energy differences
associated with the reagent population (e.g., crystals used in a
denucleation rate-limited thermal decomposition), that cause an t _
increase irE. with conversion time. Conversely, for dispersive Figure 2. Plot of the functions:k(t) = e"**0 (dashed-dotted line,
kinetics exhibiting accelertory sigmoid-t trends, it can be seen 1R, K() = & * (solid line, middle), and(t) = @7 (e = 1)+
from Figure 1 that the decrease in the activation energy is e ¥ (dashed line, bottom) as a functiontpbver the interval (= t <
attributable mainly to potential energy variations in the product
species (e.g., nuclei, in nucleation rate-limited processes); a Both eq 15 and eq 16 yield appropriate units for energy
finding that is also supported by the author’s previous wéfks.  (note: 8 has units of time?). However, as for egs 7 and 8,
Note that the latter effect is distinct from the so-called Marcus there exists the possibility foi(t) to be complex. Nonetheless,
inverted region WhiCh, for very exothermic reac[ionS, relates oOn the basis of its ablllty to accurately relate TDMT, for smaller

an increase in the activation energy/decrease in reaction rateSHO displacements, the author’s dispersive kinetic approach
with increasing thermodynamic driving foré@. is believed to possess an advantage over the other treatment

An alternative description of thex(t) versus trends depicted ~ described in this work. ,
in Figure 1 involves a discussion of the kinetic, rather than _ ©On the Nature of the Time-Dependence of the Rate
potential, energies. In deceleratory conversions (e.g., homoge_Coefhment in Dispersive Kinetics.Utilizing TDMT to describe

neous reactions), the reagent molecules with the highest kineticthe behavior of the time-dependent portion of the activation

energies are first to undergo conversion. Conversely, in accel-€N€rgy. disregarding the author’s parabolic approximation, eq
eratory conversions, such as nucleation, it is the slowestls ON€ can derive the following expression i¢t):

molecules that are most likely to first form critical nuclei. Thus, K(t) = o b Sinf(wt) 17)
in dispersive kinetics, it is possible to describe activation energy

trends in terms of both kinetic and potential energies. The link wherew is the angular frequency; the constgfithas units of
between these two descriptions might be the rate paranfieter, energy, rather than timé. Note that eq 17 relates specifically
which provides a fundamental connection between the molec-to deceleratory dispersive conversions, but a complementary
ular-level kinetic energies and the time-dependent change inexpression can be derived to describe acceleratory processes
the overall activation entropyof the conversion. (not discussed in this section).

In eq 6,8 can be considered to be a shape factor that serves From the plots shown in Figure 2 (where it is assumed that
to describe the parabolas shown in the figure (the derivation of & = 8 = w = 1, for simplicity), it can be seen that eq 5 serves
eq 14 assumes that the shapes of the two parabolas are identicals a good compromise between eq 1 and eq 17, for short,

In previous work,3 was discussed to be instrumental in It should be highlighted that the direct integration of eq 17
describing the shape of the activation energy distribution for is problematic, even more so than eq 1. Thus, a simple kinetic
dispersive processés.Additionally, as mentioned above, this model based on eq 17 does not seem feasible. Furthermore, it
parameter can describe the stochastic change in the activatioris not realistic to expect that all (deceleratory) dispersive
entropy as molecules transition over the activation energy reactions are oscillatory; rathdu(t) should tend toward zero as
barrier, during the course of conversion. As an aside, it has beent — o for most systems, consistent with eqs 1 and 5. Only on
shown that the second fit parameter in the author’s dispersive the atomic/bond level, that is, on the femtosecond time-scale
models,a, relates botrEg and the frequency factor found in  for gas-phase reactions, can one routinely observe such oscil-
classical Arrhenius kinetic treatmersts. lations. However, these oscillations typically appear damped
in cases like that of Nal (which survives for more than one
oscillation following excitation). The oscillations can signifi-
cantly affect the shapes of experimentally obtaixed tran-
0 2 sients3! As a complementary view to representing a manifes-
AD) = —AG, + 2(E, — RTpt) £ tation of both covalent and ionic bonding character, these
2\/(Eg _ RTﬁtZ)(Eg _ RTﬁtz — AG,) (15) oscillations can be considered to be a natural outcome of TDMT.

2 4 6 8 10

Equating eq 6 and eq 14, we found it possible to derive the
following relation (utilizing the quadratic formula):

Conclusion

Equation 15 can be expressed equivalently as: This work demonstrates that the use of a Maxw8lbltz-

o 2 mann activation energy distribution to define a time-dependent

At) = —AG, + 2(E, — RTpt) & rate coefficient having an approximately Gaussian functional
\/[AG _ 2(E° _ RTﬁtZ)]Z — AG2 (16) form can vyield dispersive kinetic models that, in addition to

r a r successfully modeling conversion kinetics in various real-world
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systems, can relate a time-dependent activation energy that (13) Maksimov, I. L.Crystallogr. Rep2002 47 (Suppl. 1), S105.

varies (approximately) as a function &% Using a simple (14) Stowell, M. J.Mater. Sci. Technol2002 18, 1435.
(15) Zewail, A. H.J. Phys. Chem. R00Q 104, 5660.

ext.ens.lon of Marcu§ Fheory, this time-dependence of the (16) Polanyi, M.; Wigner, EZ. Phys. Chem.. Abt. A928 139, 439.
activation energy variation was able to be supported for lower  (17) Eyring, H.J. Chem. Phys1935 3, 107.
SHO displacements and shorter valuest.oFinally, a new, (18) Evans, M. G.; Polanyi, MTrans. Faraday Socl1935 31, 875.

physicochemically relevant description of the time-dependence _ (19) Atkins, P.; de Paula, JPhysical Chemistry 7th ed.; W. H.
Freeman: New York, 2002.

of the reorganization energy was developed. (20) Plonka, A.AAnnu. Rep. Prog. Chem. Sect.1988 85, 47.
(21) Plonka, AKinet. Catal.1996 37, 661.
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